Exercise 4A

Question 1.

State, true or false:
(i)×
$$\langle -\gamma \Rightarrow -x > \gamma$$

(ii) $-5x \ge 15 \Rightarrow x \ge -3$
(iii) $2x \le -7 \Rightarrow \frac{2x}{-4} \ge \frac{-7}{-4}$
(iv) $7 > 5 \Rightarrow \frac{1}{7} < \frac{1}{5}$

Solution:

(i) $x < -y \Rightarrow -x > y$

The given statement is true.

$$(ii) - 5 \times \ge 15 \Rightarrow \frac{-5 \times}{5} \ge \frac{15}{5} \Rightarrow \times \le -3$$

The given statement is false.

$$(iii)2x \le -7 \Rightarrow \frac{2x}{-4} \ge \frac{-7}{-4}$$

The given statement is true.

$$(iv)7 > 5 \Rightarrow \frac{1}{7} < \frac{1}{5}$$

The given statement is true.

Question 2.

State, whether the following statements are true or false: (i) a < b, then a - c < b - c (ii) If a > b, then a + c > b + c (iii) If a < b, then ac > bc (iv) If a > b, then $\frac{a}{c} < \frac{b}{c}$ (v) If a - c > b - d, then a + d > b + c (vi) If a < b, and c > 0, then a - c > b - c Where a, b, c and d are real numbers and c \neq 0.

(i) $a < b \Rightarrow a - c < b - c$ The given statement is true. (ii) If $a > b \Rightarrow a + c > b + c$ The given statement is true. (iii) If $a < b \Rightarrow ac < bc$ The given statement is false. (iv) If $a > b \Rightarrow \frac{a}{c} > \frac{b}{c}$ The given statement is false. (v) If $a - c > b - d \Rightarrow a + d > b + c$ The given statement is true. (vi) If $a < b \Rightarrow a - c < b - c$ (Since, c > 0) The given statement is false.

Question 3.

If $x \in N$, find the solution set of inequations. (i) $5x + 3 \le 2x + 18$ (ii) 3x - 2 < 19 - 4x

Solution:

(i) $5x + 3 \le 2x + 18$ $5x - 2x \le 18 - 3$ $3x \le 15$ $x \le 5$

Since, $x \in N$, therefore solution set is $\{1, 2, 3, 4, 5\}$. (ii) 3x - 2 < 19 - 4x 3x + 4x < 19 + 2 7x < 21 x < 3Since, $x \in N$, therefore solution set is $\{1, 2\}$.

Question 4.

If the replacement set is the set of whole numbers, solve: (i) $x + 7 \le 11$ (ii) 3x - 1 > 8(iii) 8 - x > 5(iv) $7 - 3x \ge -\frac{1}{2}$ (v) $\times -\frac{3}{2} < \frac{3}{2} - \times$ (vi) $18 \le 3x - 2$

(i) $x + 7 \le 11$ $x \le 11 - 7$ $x \le 4$

Since, the replacement set = W (set of whole numbers) \Rightarrow Solution set = {0, 1, 2, 3, 4}

(ii) 3x - 1 > 8 3x > 8 + 1 x > 3Since, the replacement set = W (set of whole numbers) \Rightarrow Solution set = {4, 5, 6, ...} (iii) 8 - x > 5-x > 5 - 8

- x > 5 - 8 - x > -3 x < 3

Since, the replacement set = W (set of whole numbers) \Rightarrow Solution set = {0, 1, 2}

$$(iv) 7 - 3x \ge -\frac{1}{2}$$
$$-3x \ge -\frac{1}{2} - 7$$
$$-3x \ge -\frac{15}{2}$$
$$x \le \frac{5}{2}$$

Since, the replacement set = W (set of whole numbers) \therefore Solution set = {0, 1, 2}

$$(v) \times -\frac{3}{2} < \frac{3}{2} - \times$$
$$\times + \times <\frac{3}{2} + \frac{3}{2}$$
$$2x < 3$$
$$\times <\frac{3}{2}$$

Since, the replacement set = W (set of whole numbers) \therefore Solution set = {0, 1}

(vi) $18 \le 3x - 2$ $18 + 2 \le 3x$ $20 \le 3x$ $x \ge \frac{20}{3}$

Since, the replacement set = W (set of whole numbers) \therefore Solution set = {7, 8, 9, ...}

Question 5.

Solve the inequation: 3 - $2x \ge x - 12$ given that $x \in N$.

Solution:

 $3 - 2x \ge x - 12$ $-2x - x \ge -12 - 3$ $-3x \ge -15$ $x \le 5$ Since, $x \in N$, therefore, Solution set = {1, 2, 3, 4, 5}

Question 6.

If $25 - 4x \le 16$, find: (i) the smallest value of x, when x is a real number, (ii) the smallest value of x, when x is an integer.

Solution:

 $25 - 4x \le 16$ $-4x \le 16 - 25$ $-4x \le -9$ $x \ge \frac{9}{4}$ $x \ge 2.25$

(i) The smallest value of x, when x is a real number, is 2.25.

(ii) The smallest value of x, when x is an integer, is 3.

Question 7.

If the replacement set is the set of real numbers, solve:

(i)
$$-4x \ge -16$$

(ii) $8 - 3x \le 20$
(iii) $5 + \frac{x}{4} > \frac{x}{5} + 9$
(iv) $\frac{x+3}{8} < \frac{x-3}{5}$

Solution:

 $(i) - 4x \ge -16$ $\times \le 4$ Since, the replacement set of real numbers. : Solution set = {x: $x \in R$ and $x \le 4$ } (ii) $8 - 3x \le 20$ $-3x \le 20 - 8$ $-3 \times \le 12$ $x \ge -4$ Since, the replacement set of real numbers. \therefore Solution set = { x: x \in R and x ≥ -4 } $(iii)5 + \frac{x}{4} > \frac{x}{5} + 9$ $\frac{x}{4} - \frac{x}{5} > 9 - 5$ $\frac{\times}{20} > 4$ x > 80 Since, the replacement set of real numbers. :: Solution set = { $x: x \in \mathbb{R}$ and x > 80 } $(iv)\frac{x+3}{8} < \frac{x-3}{5}$ 5x + 15 < 8x - 245x - 8x < -24 - 15 -3x < -39 x > 13 Since, the replacement set of real numbers. :. Solution set = { x: $x \in \mathbb{R}$ and x > 13 }

Question 8.

Find the smallest value of x for which $5 - 2x < 5\frac{1}{2} - \frac{5}{3} \times$, where x is an integer.

Solution:

$$5 - 2x < 5\frac{1}{2} - \frac{5}{3}x$$
$$-2x + \frac{5}{3}x < \frac{11}{2} - 5$$
$$\frac{-x}{3} < \frac{1}{2}$$
$$-x < \frac{3}{2}$$
$$x > \frac{-3}{2}$$
$$x > -1.5$$

Thus, the required smallest value of x is -1.

Question 9.

Find the largest value of x for which $2(x - 1) \le 9 - x$ and $x \in W$.

Solution:

 $2(x - 1) \le 9 - x$ $2x - 2 \le 9 - x$ $2x + x \le 9 + 2$ $3x \le 11$ $x \le \frac{11}{3}$ $x \le 3.67$

Since, $x \in W$, thus the required largest value of x is 3.

Question 10.

Solve the inequation: $12 + 1\frac{5}{6} \times \le 5 + 3 \times$ and $x \in R$.

$$12 + 1\frac{5}{6} \times \le 5 + 3 \times$$

$$\frac{11}{6} \times - 3 \times \le 5 - 12$$

$$\frac{-7}{6} \times \le -7$$

$$\times \ge 6$$

$$\therefore \text{ Solution set } = \{x : x \in \mathbb{R} \text{ and } x \ge 6\}$$

Question 11.

Given $x \in \{\text{integers}\}$, find the solution set of: -5 $\leq 2x - 3 < x + 2$

Solution:

 $-5 \le 2x - 3 < x + 2$ $\Rightarrow -5 \le 2x - 3 \qquad \text{and} \qquad 2x - 3 < x + 2$ $\Rightarrow -5 + 3 \le 2x \qquad \text{and} \qquad 2x - x < 2 + 3$ $\Rightarrow -2 \le 2x \qquad \text{and} \qquad x < 5$ $\Rightarrow x \ge -1 \qquad \text{and} \qquad x < 5$ Since, $x \in \{\text{integers}\}$ $\therefore \text{ Solution set} = \{-1, 0, 1, 2, 3, 4\}$

Question 12.

Given $x \in \{\text{whole numbers}\}$, find the solution set of: -1 \leq 3 + 4x < 23

Solution:

-1≤3+4x<23		
$\Rightarrow -1 \le 3 + 4x$	and	3+4x<23
$\Rightarrow -4 \leq 4x$	and	4x < 20
$\Rightarrow \times \ge -1$	and	× < 5
Since, $x \in \{whole numbers\}$ \therefore Solution set = $\{0, 1, 2, 3, 4\}$		

Exercise 4B

Question 1.

Represent the following inequalities on real number lines: (i)2x - 1 < 5 $(II)3X + 1 \ge -5$ $(iii)2(2x - 3) \le 6$ (iv) - 4 < x < 4 $(v) - 2 \le x < 5$ $(vi)8 \ge x > -3$ $(vii) - 5 < x \leq -1$

Solution:

(i)2x - 1 < 52x < 6 x < 3 Solution on number line is:

⇒

🕀 www.studentbro.in

>>

(iv) – 4 < x < 4 Solution on number line is:

(i) $x \le -1, x \in \mathbb{R}$ (ii) $x \ge 2, x \in \mathbb{R}$ (iii) $-4 \le x < 3, x \in \mathbb{R}$ (iv) $-1 < x \le 5, x \in \mathbb{R}$

Question 3.

For the following inequations, graph the solution set on the real number line: (i) $-4 \le 3x - 1 < 8$ (ii) $x - 1 < 3 - x \le 5$

Solution:

🕀 www.studentbro.in

Question 4.

Represent the solution of each of the following inequalities on the real number line: (i)4x - 1 > x + 11(ii) $7 - x \le 2 - 6x$ (iii) $x + 3 \le 2x + 9$ (iv)2 - 3x > 7 - 5x(v) $1 + x \ge 5x - 11$ (vi) $\frac{2x + 5}{3} > 3x - 3$

Solution:

(i)4x - 1 > x + 11 3x > 12 x > 4

The solution on number line is:

$$\underbrace{\begin{array}{c} x > 4 \\ -4 & -3 & -2 & -1 \\ (ii)7 - x \le 2 - 6x \\ 5x \le -5 \\ x \le -1 \end{array}}_{x \le -1} \xrightarrow{x > 4} O$$

The solution on number line is:

(iii)x + 3 ≤ 2x + 9 -6 ≤ x

The solution on number line is:

$$(iv)2 - 3x > 7 - 5x$$

 $2x > 5$
 $x > \frac{5}{2}$
 $x > 2.5$

The solution on number line is:

 $(v)_{1+x \ge 5x - 11}$ $(v)_{1+x \ge 5x - 11}$ $(z)_{2 \ge 4x}$ $(z)_{2 \ge x}$

The solution on number line is:

 $x \le 3$

 $(vi)\frac{2x+5}{3} > 3x-3$ 2x+5 > 9x-9-7x > -14x < 2

The solution on number line is:

Question 5.

 $x \in \{\text{real numbers}\}\$ and $-1 < 3 - 2x \le 7$, evaluate x and represent it on a number line.

Solution: -1 < 3 - $2x \le 7$ -1 < 3 - 2x and 3 - $2x \le 7$ 2x < 4 and $-2x \le 4$

x < 2 and $x \ge -2$ Solution set = $\{-2 \le x < 2, x \in R\}$ Thus, the solution can be represented on a number line as:

Question 6.

List the elements of the solution set of the inequation $-3 < x - 2 \le 9 - 2x$; $x \in N$.

Solution:

-3 < x - 2 ≤ 9 - 2x -3 < x - 2 and x - 2 ≤ 9 - 2x -1 < x and 3x ≤ 11 $\frac{11}{3}$ Since, x ∈ N ∴ Solution set = {1, 2, 3}

Question 7.

Find the range of values of x which satisfies $-2\frac{2}{3} \le x + \frac{1}{3} < 3\frac{1}{3}$; $x \in \mathbb{R}$. Graph these values of x on the number line.

Graph these values of x on the number

Solution:

$$-2\frac{2}{3} \le x + \frac{1}{3} \text{ and } x + \frac{1}{3} < 3\frac{1}{3}$$
$$\Rightarrow -\frac{8}{3} \le x + \frac{1}{3} \text{ and } x + \frac{1}{3} < \frac{10}{3}$$
$$\Rightarrow -\frac{8}{3} - \frac{1}{3} \le x \text{ and } x < \frac{10}{3} - \frac{1}{3}$$
$$\Rightarrow -\frac{9}{3} \le x \text{ and } x < \frac{9}{3}$$

⇒ -3 ≤ x and x < 3
∴ -3 ≤ x < 3
The required graph of the solution set is:

Question 8.

Find the values of x, which satisfy the inequation:

 $-2 \le \frac{1}{2} - \frac{2 \times}{3} < 1\frac{5}{6}$; $\times \in \mathbb{N}$. Graph the solution on the number line.

Solution:

$$-2 \le \frac{1}{2} - \frac{2x}{3} < 1\frac{5}{6}$$

$$-2 \le \frac{1}{2} - \frac{2x}{3} \text{ and } \frac{1}{2} - \frac{2x}{3} < 1\frac{5}{6}$$

$$\frac{-5}{2} \le -\frac{2x}{3} \text{ and } -\frac{2x}{3} < \frac{8}{6}$$

$$\frac{15}{4} \ge x \text{ and } x > -2$$

$$3.75 \ge x \text{ and } x > -2$$
Since, $x \in \mathbb{N}$

$$\therefore \text{ Solution set} = \{1, 2, 3\}$$
The required graph of the solution set is:

Question 9.

Given $x \in \{\text{real numbers}\}$, find the range of values of x for which $-5 \le 2x - 3 < x + 2$ and represent it on a number line.

Solution:

 $-5 \le 2x - 3 < x + 2$ $-5 \le 2x - 3$ and 2x - 3 < x + 2 $-2 \le 2x$ and x < 5 $-1 \le x$ and x < 5Required range is $-1 \le x < 5$.

The required graph is:

Question 10. If $5x - 3 \le 5 + 3x \le 4x + 2$, express it as $a \le x \le b$ and then state the values of a and b.

Solution:

 $5x - 3 \le 5 + 3x \le 4x + 2$ $5x - 3 \le 5 + 3x$ and $5 + 3x \le 4x + 2$

 $2x \le 8$ and $-x \le -3$ $x \le 4$ and $x \ge 3$

Thus, $3 \le x \le 4$. Hence, a = 3 and b = 4.

Question 11.

Solve the following inequation and graph the solution set on the number line: $2x - 3 < x + 2 \le 3x + 5$, $x \in R$.

Solution:

 $2x - 3 < x + 2 \le 3x + 5$ 2x - 3 < x + 2 and $x + 2 \le 3x + 5$ x < 5 and $-3 \le 2x$ x < 5 and $-1.5 \le x$

Solution set = $\{-1.5 \le x < 5\}$ The solution set can be graphed on the number line as:

CLICK HERE

🕀 www.studentbro.in

Question 12.

Solve and graph the solution set of: (i) 2x - 9 < 7 and $3x + 9 \le 25$, $x \in R$ (ii) $2x - 9 \le 7$ and 3x + 9 > 25, $x \in I$ (iii) $x + 5 \ge 4(x - 1)$ and 3 - 2x < -7, $x \in R$

Question 13. Solve and graph the solution set of: (i) 3x - 2 > 19 or $3 - 2x \ge -7$, $x \in R$ (ii) 5 > p - 1 > 2 or $7 \le 2p - 1 \le 17$, $p \in R$

Solution:

(i) 3x - 2 > 19 or $3 - 2x \ge -7$ 3x > 21 or $-2x \ge -10$ x > 7 or $x \le 5$

Graph of solution set of x > 7 or $x \le 5$ = Graph of points which belong to x > 7 or $x \le 5$ or both.

Thus, the graph of the solution set is:

(ii) 5 > p - 1 > 2 or $7 \le 2p - 1 \le 17$ 6 > p > 3 or $8 \le 2p \le 18$ 6 > p > 3 or $4 \le p \le 9$

Graph of solution set of 6 > p > 3 or $4 \le p \le 9$ = Graph of points which belong to 6 > p > 3 or $4 \le p \le 9$ or both = Graph of points which belong to 3

Thus, the graph of the solution set is:

Question 14.

The diagram represents two inequations A and B on real number lines:

(i) Write down A and B in set builder notation.

(ii) Represent A \cup B and A \cap B' on two different number lines.

Solution:

(i) A = {x \in R: -2 \leq x < 5} B = {x \in R: -4 \leq x < 3} (ii) A \cap B = {x \in R: -2 \leq x < 5} It can be represented on number line as:

 $\begin{array}{l} B' = \{x \in R: \, 3 < x \leq -4\} \\ A \cap B' = \{x \in R: \, 3 \leq x < 5\} \end{array}$

It can be represented on number line as:

Question 15. Use real number line to find the range of values of x for which: (i) x > 3 and 0 < x < 6(ii) x < 0 and $-3 \le x < 1$ (iii) $-1 < x \le 6$ and $-2 \le x \le 3$

Solution:

(i) x > 3 and 0 < x < 6

Both the given inequations are true in the range where their graphs on the real number lines overlap.

The graphs of the given inequations can be drawn as:

From both graphs, it is clear that their common range is 3 < x < 6

(ii) x < 0 and $-3 \le x < 1$

Both the given inequations are true in the range where their graphs on the real number lines overlap.

The graphs of the given inequations can be drawn as: x < 0

From both graphs, it is clear that their common range is $-3 \le x \le 0$

(iii) $-1 < x \le 6$ and $-2 \le x \le 3$

Both the given inequations are true in the range where their graphs on the real number lines overlap.

The graphs of the given inequations can be drawn as:

From both graphs, it is clear that their common range is $-1 < x \le 3$

Question 16.

Illustrate the set {x: $-3 \le x < 0$ or x > 2, $x \in R$ } on the real number line.

Solution:

Graph of solution set of $-3 \le x < 0$ or x > 2= Graph of points which belong to $-3 \le x < 0$ or x > 2 or both

Thus, the required graph is:

Question 17. Given A = {x: $-1 < x \le 5$, $x \in R$ } and B = {x: $-4 \le x < 3$, $x \in R$ }

Represent on different number lines: (i) $A \cap B$

(ii) A' ∩ B (iii) A − B

Question 18.

P is the solution set of 7x - 2 > 4x + 1 and Q is the solution set of $9x - 45 \ge 5(x - 5)$; where $x \in R$. Represent:

(i) $P \cap Q$ (ii) P - Q(iii) $P \cap Q'$ on different number lines.

Solution:

```
P = \{x: 7x - 2 > 4x + 1, x \in R\}

7x - 2 > 4x + 1

7x - 4x > 1 + 2

3x > 3

x > 1

and

Q = \{x: 9x - 45 \ge 5(x - 5), x \in R\}

9x - 45 \ge 5x - 25

9x - 5x \ge -25 + 45

4x \ge 20

x \ge 5

(i) P \cap Q = \{x: x \ge 5, x \in R\}
```


Question 19.

Find the range of values of x, which satisfy:

$$-\frac{1}{3} \le \frac{\times}{2} + 1\frac{2}{3} < 5\frac{1}{6}$$

Graph, in each of the following cases, the values of x on the different real number lines: (i) $x \in W$ (ii) $x \in Z$ (iii) $x \in R$

Solution:

$$-\frac{1}{3} \le \frac{x}{2} + 1\frac{2}{3} < 5\frac{1}{6}$$
$$-\frac{1}{3} - \frac{5}{3} \le \frac{x}{2} < \frac{31}{6} - \frac{5}{3}$$
$$-\frac{6}{3} \le \frac{x}{2} < \frac{21}{6}$$
$$-4 \le x < 7$$

(i) If x ∈ W, range of values of x is {0, 1, 2, 3, 4, 5, 6}.

CLICK HERE

>>

🕀 www.studentbro.in

(ii) If x ∈ Z, range of values of x is {-4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6}.

(iii) If $x \in R$, range of values of x is $-4 \le x < 7$.

Question 20.

Given: A = {x: $-8 < 5x + 2 \le 17$, $x \in I$ }, B = {x: $-2 \le 7 + 3x < 17$, $x \in R$ } Where R = {real numbers} and I = {integers}. Represent A and B on two different number lines. Write down the elements of A \cap B.

Solution:

Question 21.

Solve the following inequation and represent the solution set on the number line $2x - 5 \le 5x + 4 < 11$, where $x \in I$

Solution:

Question 22.

Given that $x \in I$, solve the inequation and graph the solution on the number line: $3 \ge \frac{x-4}{2} + \frac{x}{3} \ge 2$

Solution:

Question 23.

Given: A = {x: 11x - 5 > 7x + 3, $x \in R$ } and B = {x: $18x - 9 \ge 15 + 12x$, $x \in R$ }. Find the range of set A \cap B and represent it on number line.

Solution:

A = {x: 11x - 5 > 7x + 3, $x \in R$ } = {x: 4x > 8, $x \in R$ }

= {x: $x > 2, x \in R$ } B = {x: $18x - 9 \ge 15 + 12x, x \in R$ } = {x: $6x \ge 24, x \in R$ } = {x: $x \ge 4, x \in R$ } A \cap B = {x: $x \ge 4, x \in R$ } It can be represented on number line as:

Question 24.

Find the set of values of x, satisfying: $7x + 3 \ge 3x - 5$ and $\frac{x}{4} - 5 \le \frac{5}{4} - x$, where $x \in N$.

Solution:

 $7x + 3 \ge 3x - 5$ $4x \ge -8$ $x \ge -2$ $\frac{x}{4} - 5 \le \frac{5}{4} - x$ $\frac{x}{4} + x \le \frac{5}{4} + 5$ $\frac{5x}{4} \le \frac{25}{4}$ $x \le 5$

Since, x ∈ N ∴ Solution set = {1, 2, 3, 4, 5}

Question 25.

Solve: (i) $\frac{\times}{2} + 5 \le \frac{\times}{3} + 6$, where x is a positive odd integer. (ii) $\frac{2\times + 3}{3} \ge \frac{3\times - 1}{4}$, where x is a positive even integer.

(i)
$$\frac{x}{2} + 5 \le \frac{x}{3} + 6$$

 $\frac{x}{2} - \frac{x}{3} \le 6 - 5$
 $\frac{x}{6} \le 1$
 $x \le 6$

Since, x is a positive odd integer :. Solution set = {1, 3, 5} (ii) $\frac{2x + 3}{3} \ge \frac{3x - 1}{4}$ $8x + 12 \ge 9x - 3$ $-x \ge -15$ $x \le 15$

Since, x is a positive even integer : Solution set = {2, 4, 6, 8, 10, 12, 14}

Question 26.

Solve the inequation: $-2\frac{1}{2} + 2x \le \frac{4x}{5} \le \frac{4}{3} + 2x$, $x \in W$. Graph the solution set on the number line.

Solution:

$$-2\frac{1}{2} + 2x \le \frac{4x}{5} \le \frac{4}{3} + 2x$$
$$-2\frac{1}{2} \le \frac{4x}{5} - 2x \le \frac{4}{3}$$
$$-\frac{5}{2} \le -\frac{6x}{5} \le \frac{4}{3}$$
$$\frac{25}{12} \ge x \ge -\frac{10}{9}$$

Question 27.

Find three consecutive largest positive integers such that the sum of one-third of first, one-fourth of second and one-fifth of third is atmost 20.

Solution:

Let the required integers be x, x + 1 and x + 2. According to the given statement,

$$\frac{\frac{1}{3} \times + \frac{1}{4} (\times + 1) + \frac{1}{5} (\times + 2) \le 20}{\frac{20 \times + 15 \times + 15 + 12 \times + 24}{60}} \le 20$$

$$\frac{47 \times + 39 \le 1200}{47 \times \le 1161}$$

$$\times \le 24.702$$

Thus, the largest value of the positive integer x is 24. Hence, the required integers are 24, 25 and 26.

Question 28.

Solve the given inequation and graph the solution on the number line. $2y - 3 < y + 1 \le 4y + 7$, $y \in R$

Solution:

$$2y - 3 < y + 1 \le 4y + 7, y \in R$$

$$\Rightarrow 2y - 3 - y < y + 1 - y \le 4y + 7 - y$$

$$\Rightarrow y - 3 < 1 \le 3y + 7$$

$$\Rightarrow y - 3 < 1 \text{ and } 1 \le 3y + 7$$

$$\Rightarrow y < 4 \text{ and } 3y \ge 6 \Rightarrow y \ge -2$$

$$\Rightarrow -2 \le y < 4$$

The graph of the given equation can be represented on a number line as:

Question 29.

Solve the inequation: $3z - 5 \le z + 3 < 5z - 9$, $z \in R$. Graph the solution set on the number line.

Solution:

 $3z - 5 \le z + 3 < 5z - 9$ $3z - 5 \le z + 3$ and z + 3 < 5z - 9 $2z \le 8$ and 12 < 4z $z \le 4$ and 3 < zSince, z R \therefore Solution set = { $3 < z \le 4, x \in R$ } It can be represented on a number line as:

Question 30.

Solve the following inequation and represent the solution set on the number line.

$$-3 < -\frac{1}{2} - \frac{2\times}{3} \le \frac{5}{6}, \ \times \in \mathbb{R}$$

Solution:

CLICK HERE

 \gg

Question 31.

Solve the following inequation and represent the solution set on the number line:

$$4x - 19 < \frac{3x}{5} - 2 \le \frac{-2}{5} + x, x \in R$$

Solution:

Consider the given inequation:

$$4x - 19 < \frac{3x}{5} - 2 \le \frac{-2}{5} + x, x \in R$$

$$\Rightarrow 4x - 19 + 2 < \frac{3x}{5} - 2 + 2 \le \frac{-2}{5} + x + 2, x \in R$$

$$\Rightarrow 4x - 17 < \frac{3x}{5} \le x + \frac{8}{5}, x \in R$$

$$\Rightarrow 4x - \frac{3x}{5} < 17 \text{ and } \frac{-8}{5} \le x - \frac{3x}{5}, x \in R$$

$$\Rightarrow \frac{20x - 3x}{5} < 17 \text{ and } \frac{-8}{5} \le \frac{5x - 3x}{5}, x \in R$$

$$\Rightarrow \frac{17x}{5} < 17 \text{ and } \frac{-8}{5} \le \frac{2x}{5}, x \in R$$

$$\Rightarrow \frac{17x}{5} < 17 \text{ and } -4 \le x, x \in R$$

$$\Rightarrow x < 5 \text{ and } -4 \le x, x \in R$$

$$\Rightarrow -4 \le x < 5; \text{ where } x \in R$$

The solution set can be represented on a number line as follows:

Question 32.

Solve the following in equation, write the solution set and represent it on the number line:

$$-\frac{x}{3} \le \frac{x}{2} - 1\frac{1}{3} < \frac{1}{6}, x \in \mathbb{R}$$

The given inequation is $-\frac{x}{3} \le \frac{x}{2} - 1\frac{1}{3} < \frac{1}{6}, x \in \mathbb{R}$ $\Rightarrow -\frac{x}{3} \le \frac{x}{2} - \frac{4}{3} < \frac{1}{6}$ Now, $-\frac{x}{3} \le \frac{x}{2} - \frac{4}{3} < \frac{x}{2} - \frac{4}{3} < \frac{1}{6}$ $\Rightarrow -\frac{x}{3} - \frac{x}{2} \le -\frac{4}{3} \qquad \Rightarrow \frac{x}{2} < \frac{1}{6} + \frac{4}{3}$ $\Rightarrow \frac{2x + 3x}{6} \ge \frac{4}{3} \qquad \Rightarrow \frac{x}{2} < \frac{1 + 4x2}{6}$ $\Rightarrow \frac{5x}{6} \ge \frac{4}{3} \qquad \Rightarrow \frac{x}{2} < \frac{1 + 8}{6}$ $\Rightarrow \frac{5x}{6} \ge \frac{4}{3} \qquad \Rightarrow \frac{x}{2} < \frac{1 + 8}{6}$ $\Rightarrow \frac{5x}{6} \ge \frac{8}{5} \qquad \Rightarrow \frac{x}{2} < \frac{3}{2}$ $\Rightarrow x \ge \frac{8}{5} \qquad \Rightarrow \frac{x}{2} < \frac{3}{2}$ $\Rightarrow x < 3$

: Solution set = {x :
$$1.6 \le x < 3$$
}

It can be represented on a number line as follows :

Question 33.

Find the values of x, which satify the inequation

$$-2\frac{5}{6} < \frac{1}{2} - \frac{2\times}{3} \le 2, \times \in \mathbb{W},$$

Graph the solution set on the number line.

Solution:

We need to find the values of x, such that

x satisfies the inequation $-2\frac{5}{6} < \frac{1}{2} - \frac{2x}{3} \le 2, x \in W$ Consider the given inequation:

$$-2\frac{5}{6} < \frac{1}{2} - \frac{2x}{3} \le 2$$

$$\Rightarrow \frac{-17}{6} < \frac{3-4x}{6} \le \frac{12}{6}$$

$$\Rightarrow \frac{17}{6} > \frac{4x-3}{6} \ge \frac{-12}{6}$$

$$\Rightarrow 17 > 4x - 3 \ge -12$$

$$\Rightarrow -12 \le 4x - 3 < 17$$

$$\Rightarrow -12 + 3 \le 4x - 3 + 3 < 17 + 3$$

$$\Rightarrow -9 \le 4x < 20$$

$$\Rightarrow -\frac{9}{4} \le \frac{4x}{4} < \frac{20}{4}$$

$$\Rightarrow -\frac{9}{4} \le x < 5$$

Since x \empty W, the values of x are 0, 1, 2, 3, 4.
And the required line is

CLICK HERE

≫

Question 34.

Solve the following in equation and write the solution set: 13x - 5 < 15x + 4 < 7x + 12, $x \in R$

Solution:

 $13x - 5 < 15x + 4 < 7x + 12, x \in \mathbb{R}$ We have $13x - 5 < 15x + 4 \quad \text{and} \qquad 15x + 4 < 7x + 12$ $\Rightarrow 13x < 15x + 9 \qquad \Rightarrow 15x < 7x + 8$ $\Rightarrow 0 < 2x + 9 \qquad \Rightarrow 8x < 8$ $\Rightarrow -9 < 2x \qquad \Rightarrow x < 1$ $\Rightarrow -\frac{9}{2} < x \qquad \Rightarrow x < 1$

$$\therefore -\frac{9}{2} < x < 1$$

i.e. $-4.5 < x < 1$
 \therefore Solution set = {x : x $\in \mathbb{R}$ and $-4.5 < x < 1$ }
The required line is
$$\underbrace{+ \frac{9}{2} < x < 1}_{-5} \underbrace{+ \frac{1}{4}}_{-3} \underbrace{+ \frac{1}{2}}_{-2} \underbrace{+ \frac{1}{1}}_{-1} \underbrace{+ \frac{9}{2}}_{-1} \underbrace{+ \frac{9}{2}$$

Question 35.

Solve the following inequation, write the solution set and represent it on the number line.

 $-3(x - 7) \ge 15 - 7x > x+1/3$, x R.

Solution:

$$-3(x-7) \ge 15 - 7x > \frac{x+1}{3}, x \in \mathbb{R}$$

$$\Rightarrow -3(x-7) \ge 15 - 7x \text{ and } 15 - 7x > \frac{x+1}{3}$$

$$\Rightarrow -3x + 21 \ge 15 - 7x \text{ and } 45 - 21x > x + 1$$

$$\Rightarrow -3x + 7x \ge 15 - 21 \text{ and } 45 - 1 > x + 21x$$

$$\Rightarrow 4x \ge -6 \text{ and } 44 > 22x$$

$$\Rightarrow x \ge \frac{-3}{2} \text{ and } 2 > x$$

$$\Rightarrow x \ge -1.5 \text{ and } 2 > x$$

$$\therefore \text{ The solution set is } \{x : x \in \mathbb{R}, -1.5 \le x < 2\}.$$

The solution set is represented on number line as follows:

Question 36.

Solve the following inequation and represent the solution set on a number line.

$$-8\frac{1}{2} < -\frac{1}{2} - 4x \le 7\frac{1}{2}, \ x \in I$$

$$-8\frac{1}{2} < -\frac{1}{2} - 4x \le 7\frac{1}{2}, x \in I$$

$$-8\frac{1}{2} < -\frac{1}{2} - 4x$$

$$\Rightarrow \frac{-15}{2} < -\frac{1}{2} - 4x$$

$$\Rightarrow \frac{-15}{2} + \frac{1}{2} < -4x$$

$$\Rightarrow \frac{-14}{2} < -4x$$

$$\Rightarrow -7 < -4x$$

$$\Rightarrow 7 > 4x$$

$$\Rightarrow x < \frac{7}{4}$$

$$-\frac{1}{2} - 4x \le 7\frac{1}{2}$$

$$\Rightarrow -\frac{1}{2} - 4x \le \frac{15}{2}$$

$$\Rightarrow -4x \le \frac{15}{2} + \frac{1}{2}$$

$$\Rightarrow -4x \le 8$$

$$\Rightarrow x \ge -2$$
So,
$$\frac{7}{4} > x \ge -2$$
As, $x \in I$

$$x = \{-2, -1, 0, 1\}$$

$$\frac{X'}{4}$$

Get More Learning Materials Here : 📕

r www.studentbro.in

Х